Overview

This course introduces students to structural analysis and computer modelling of structures. It explains the theory and physics behind existing computer software that are used for the analysis of complicated structures. It also provides students with a better understanding of the structural behaviour of beams, frames and trusses under different loading conditions. The tools and knowledge gained in this course are inevitable for the design of structures. The topics that are covered in this course include revision of statics with emphasise on drawing internal forces diagrams; conjugate beam method, energy of structures, principles of virtual work; the force (flexibility) method; stiffness method; and moment distribution method applied to continuous beams.
Faculty
Faculty of Engineering

School
School of Civil and Environmental Engineering

Study Level
Undergraduate

Offering Terms
Summer Term, Term 2

Campus
Kensington

Indicative contact hours
5

Timetable
Visit timetable website for details
Conditions for Enrolment

Prerequisites: (ENGG1300 AND ENGG2400) OR (CVEN1300 AND CVEN2301) (Prerequisite only applicable to UG cohort taking this course).
Equivalent Courses

CVEN3301 6 UOC
Structural Analysis and Modelling
Course Outline

To access course outline, please visit:

CVEN2303 Course Outline
Fees

Commonwealth Supported Students $1191
Domestic Students $5970
International Students $5970

DISCLAIMER
Please note that the University reserves the right to vary student fees in line with relevant legislation. This fee information is provided as a guide and more specific information about fees, including fee policy, can be found on the fee website.

For advice about fees for courses with a fee displayed as "Not Applicable", including some Work Experience and UNSW Canberra at ADFA courses, please contact the relevant Faculty.

Where a Commonwealth Supported Students fee is displayed, it does not guarantee such places are available.
Pre-2019 Handbook Editions

Access past handbook editions (2018 and prior)