Double Degree

Aeronautical Engineering (Honours) / Science

4480 | 240 Units of Credit

Overview

This program is not available to international or Defence sponsored students.

The School of Engineering and Information Technology (SEIT) and the School of Physical, Environmental and Mathematical Sciences (PEMS) offer a dual degree program which qualifies students for two degrees after the equivalent of five years of successful full-time study leading to the award of the degrees Bachelor of Engineering (Aeronautical) (Honours) and Bachelor of Science(BE (Aero) (Hons) BSc). The School of Engineering and Information Technology (SEIT) will administer the program. Students should seek advice from the relevant School Office in the first instance, or from Student Administrative Services, UNSW Canberra.
<table>
<thead>
<tr>
<th>Faculty</th>
<th>UNSW Canberra at ADFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campus</td>
<td>Canberra</td>
</tr>
<tr>
<td>Study Level</td>
<td>Undergraduate</td>
</tr>
<tr>
<td>Typical duration</td>
<td>5 Years</td>
</tr>
<tr>
<td>Academic Calendar</td>
<td>UNSW Canberra Calendar</td>
</tr>
<tr>
<td>Minimum Units of Credit</td>
<td>240</td>
</tr>
<tr>
<td>Award(s)</td>
<td>Bachelor of Engineering (Honours) - BE (Hons) Bachelor of Science - BSc</td>
</tr>
</tbody>
</table>
Learning Outcomes

4472 - Aeronautical Engineering (Honours)

1. Students will be able to relate a quantitative, theory-based understanding of the sciences and fundamentals of aeronautical engineering (encompassing aerodynamics, structural mechanics, instrumentation, propulsion and control of aeronautical and space systems).

2. Students will be able to appropriately select and apply the mathematical, statistical, programming and computational tools and techniques which underpin aeronautical engineering.

3. Students will demonstrate a comprehensive understanding of flight vehicles and their systems, and articulate directions of future research and knowledge development in aeronautical engineering.

4. Students will synthesise flight vehicle design practice, contextual factors, norms and accountabilities in and the limitations on aeronautical engineering.

5. Students will define, conduct experiments on and analyse complex, open-ended problems and apply appropriate methods for their solution.

6. Students will demonstrate proficiency in applying systematic engineering synthesis and design processes, and critically evaluating and effectively communicating the results and implications to all audiences.

7. Students will be able to operate in collaborative environments, as leader or member of interdisciplinary teams.

8. Students will demonstrate independence, creativity and ethical conduct, and explain the importance of user-focused and sustainable solutions.

4415 - Science
1. understand the content of their discipline and its interdisciplinary context. Students should be able to adequately determine the scope of their scientific discipline, its key insights, and what it adds to an understanding of the world. Students should be able to apply disciplinary knowledge and skills to solve problems.

2. engage in scientific practice with technical competence and adequate discipline-specific knowledge. Students should have the ability to construct new concepts and create new understanding through the process of inquiry, critical analysis, problem-solving, and scientific research.

3. demonstrate professional motivation and a capacity for creativity and long-term intellectual development. Students should have the ability to take responsibility for their own learning, motivated by curiosity and an appreciation of the value of knowledge.

4. communicate effectively and appropriately in a professional context (intra and inter disciplinary), or in a broader social context. Students should be able to speak competently about scientific issues in their discipline, and explain these issues to specialists and lay-people.

5. contribute positively to collaborative scientific research. Students should demonstrate a capacity for self-management, teamwork and leadership. Students should be capable of open-minded, objective and reasoned analysis, in order to achieve common goals and further the learning of themselves and others.

6. make appropriate and effective use of information and digital information-technology relevant to their discipline. Students should be familiar with important sources of information in their discipline and important tools of search and analysis.

7. reflect critically upon broad ethical ideas and specific codes of conduct in order to behave in accordance with ethical practice and social responsibility. Student should be able to reflect critically on their responsibilities within a professional community or broader social community.

Graduate Capabilities:
For more information on Graduate Capabilities, please click on this link.
Stand Alone Programs

Click on the link below to find out more about each individual program.

Program 4472
Aeronautical Engineering (Honours)

Program 4415
Science
Double Degree Structure

Students must complete 240 UOC.

Bachelor of Engineering (Aeronautical) (Honours)/Bachelor of Science majoring in Mathematics and Statistics

1. Bachelor of Engineering (Aeronautical) (Honours) – 144 UOC
2. Bachelor of Science majoring in Mathematics and Statistics – 72 UOC
3. Double Counted Courses: ZPEM1303, ZPEM1304, ZPEM2309, ZPEM2310 – 24 UOC

Bachelor of Engineering (Aeronautical) (Honours)/Bachelor of Science majoring in Physics

1. Bachelor of Engineering (Aeronautical) (Honours) – 144 UOC
2. Bachelor of Science majoring in Physics – 78 UOC
3. Double Counted Courses: ZPEM1303, ZPEM1501, ZPEM1304 – 18 UOC

Majors

4415 - Science

Students must complete one of the majors below.

MAJOR:

AMATA1 | 48 UOC
Mathematics and Statistics

APHYA1 | 48 UOC
Physics

ZITEK1 | 48 UOC
Computer Science

Computer Science (ZITEK1):

Only available to students enrolled in the Bachelor of Engineering (Electrical) (Hons)/Science (4482).

Mathematics and Statistics (AMATA1)
- ZPEM1301 Mathematics 1A and ZPEM1302 Mathematics 1B are substituted by ZPEM1303 Engineering Mathematics 1A and ZPEM1304 Engineering Mathematics 1B.

- ZPEM2311 Mathematical Modelling and ZPEM2303 Mathematical Tools for Science are substituted by ZPEM2309 Engineering Mathematics 2A and ZPEM2310 Engineering Mathematics 2B.

- Students take the Level 3 Core Courses ZPEM3301 Topics in Mathematics, ZPEM3311 Mathematical Methods, and ZPEM3313 Applied Nonlinear Dynamics.

Level 1 Core Courses

4472 - Aeronautical Engineering (Honours)

Students must take 48 UOC of the following courses.

<table>
<thead>
<tr>
<th>Course</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEIT1102</td>
<td>6</td>
</tr>
<tr>
<td>Introduction to Programming</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEIT1501</td>
<td>6</td>
</tr>
<tr>
<td>Engineering Practice and Design</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEIT1503</td>
<td>6</td>
</tr>
<tr>
<td>Engineering Mechanics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEIT1504</td>
<td>6</td>
</tr>
<tr>
<td>Introduction to Mechanical and Aeronautical Engineering</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZPEM1303</td>
<td>6</td>
</tr>
<tr>
<td>Engineering Mathematics 1A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZPEM1304</td>
<td>6</td>
</tr>
<tr>
<td>Engineering Mathematics 1B</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZPEM1307</td>
<td>6</td>
</tr>
<tr>
<td>Computational Problem Solving</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZPEM1501</td>
<td>6</td>
</tr>
<tr>
<td>Physics 1A: Mechanics, Waves and Thermodynamics</td>
<td></td>
</tr>
</tbody>
</table>
Level 2 Core Courses

4472 - Aeronautical Engineering (Honours)

Students must take 48 UOC of the following courses.

ZEIT2500 6 UOC
Thermofluids

ZEIT2501 6 UOC
Mechanical and Electronic Design

ZEIT2502 6 UOC
Fundamentals of Flight

ZEIT2503 6 UOC
Fluid Mechanics

ZEIT2504 6 UOC
Mechanics of Solids

ZINT2501 6 UOC
Engineering Materials and Chemistry

ZPEM2309 6 UOC
Engineering Mathematics 2A

ZPEM2310 6 UOC
Engineering Mathematics 2B

Level 3 Core Courses

4472 - Aeronautical Engineering (Honours)

Students must take 36 UOC of the following courses.

ZEIT3500 6 UOC
Engineering Structures
Level 4 Core Courses

4472 - Aeronautical Engineering (Honours)

Students must take 30 UOC of the following courses.

Z4500 | 6 UOC
Engineering Project A

Z4501 | 6 UOC
Engineering Project B

Z4502 | 6 UOC
Aircraft and Systems Design 2

Z4503 | 6 UOC
Applied Thermodynamics and Propulsion

ZINT2100 | 6 UOC
Introduction to Cyber-Security: Policy & Operations
Technical Electives

4472 - Aeronautical Engineering (Honours)

Students majoring in Maths & Stats in the BSc must complete 12 UOC of the following courses. Students majoring in Physics in the BSc must complete 18 UOC of the following courses.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>UOC</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZEIT3502</td>
<td>6</td>
<td>Vibration and Control Engineering</td>
</tr>
<tr>
<td>ZEIT4001</td>
<td>6</td>
<td>Engineering Structures 2</td>
</tr>
<tr>
<td>ZEIT4003</td>
<td>6</td>
<td>Computational Fluid Dynamics</td>
</tr>
<tr>
<td>ZEIT4006</td>
<td>6</td>
<td>Structural Integrity Assessment</td>
</tr>
<tr>
<td>ZEIT4007</td>
<td>6</td>
<td>Rotorcraft Engineering</td>
</tr>
<tr>
<td>ZEIT4008</td>
<td>6</td>
<td>Integrated Mechanical Design</td>
</tr>
<tr>
<td>ZEIT4011</td>
<td>6</td>
<td>Occasional Elective 1</td>
</tr>
<tr>
<td>ZEIT4012</td>
<td>6</td>
<td>Occasional Elective 2</td>
</tr>
<tr>
<td>ZEIT4013</td>
<td>6</td>
<td>Hypersonics and Advanced Propulsion</td>
</tr>
<tr>
<td>ZEIT4014</td>
<td>6</td>
<td>Impact Dynamics</td>
</tr>
</tbody>
</table>
Science Electives

4415 - Science

Students complete between 12 UOC - 36 UOC in Science electives depending on the specific Engineering Discipline and Science Major combination.

4480 BEng (Aero) / BSc :
- Students majoring in Maths & Stats complete any 36 UOC in Science electives as listed below.
- Students majoring in Physics complete any 12 UOC in Science electives as listed below. ZPEM3103 Quantum Theory and Applications in Spectroscopy is recommended.

4481 BEng (Civil) / BSc :
- Students majoring in Maths & Stats must complete ZPEM1102 Chemistry 1B and a total of 36 UOC in Science electives as listed below.
- Students majoring in Physics complete any 12 UOC in Science electives as listed below. ZPEM3103 Quantum Theory and Applications in Spectroscopy is recommended.

4482 BEng (Elec) / BSc :
- Students majoring in Computer Science complete any 24 UOC in Science electives as listed below.
- Students majoring in Maths & Stats must complete ZPEM1502 Physics 1B and a total of 36 UOC in Science electives as listed below.
- Students majoring in Physics complete any 18 UOC in Science electives as listed below. ZPEM3103 Quantum Theory and Applications in Spectroscopy is recommended.

4483 BEng (Mech) / BSc :
- Students majoring in Maths & Stats complete any 36 UOC in Science electives as listed below.
Students majoring in Physics complete any 12 UOC in Science electives as listed below. ZPEM3103 Quantum Theory and Applications in Spectroscopy is recommended.

any Engineering and Information Technology course

any Physical, Environmental & Mathematical Sciences course

General Education

4415 - Science

Students must take at least 6 UOC of the following courses, normally taken in the fourth or fifth year of study.

One of the following:
ZGEN2222 | 6 UOC
Introduction to Strategic Studies

ZGEN2801 | 6 UOC
Strategy, Management and Leadership

One of the following:
ZGEN2215 | 6 UOC
Law, Force and Legitimacy

ZGEN2240 | 6 UOC
Introduction to Military Ethics

ZINT2100 Cyber Security

4480 - Aeronautical Engineering (Honours) / Science

For students majoring in Maths & Stats, ZINT2100 Cyber Security may be taken in Year 2, 3, 4 or 5 as required. For students majoring in Physics, ZINT2100 Cyber Security may be taken in Year 3, 4 or 5 as required.

Maturity Requirements

4480 - Aeronautical Engineering (Honours) / Science

- Students must complete 36 UOC of Level 1 courses before undertaking Level 2
- Student must complete 72 UOC of Level 1/2 courses before undertaking Level 3 courses.
- Students must complete 102 UOC of their engineering program (excluding General Education courses) before undertaking Level 4 courses.

Practical Experience

4472 - Aeronautical Engineering (Honours)

Before graduation a student shall complete 60 days of approved practical engineering experience which must be done in blocks of at least 20 working days each, each block being in the service of a single employer.

Technical Electives - Areas of Interest

4472 - Aeronautical Engineering (Honours)

Students may choose to take elective courses in the following areas of interest:

- **Structural Integrity:**
 - ZEIT4001 Engineering Structures 2 (6 UOC)
 - ZEIT4006 Structural Integrated Assessment (6 UOC)
 - ZEIT4008 Integrated Mechanical Design (6 UOC)

- **Rotorcraft:**
 - ZEIT4006 Structural Integrated Assessment (6 UOC)
 - ZEIT4007 Rotorcraft Engineering (6 UOC)

- **High Performance Aerospace Vehicle:**
 - ZEIT4003 Computational Fluid Dynamics (6 UOC)
 - ZEIT4013 Hypersonics (6 UOC)

- **Space Engineering. At least 2 electives chosen from:**
 - ZEIT4225 Satellite Communications (6 UOC)
 - ZEIT4506 Orbital Mechanics (6 UOC)
 - ZEIT4507 Space Situational Awareness (6 UOC)

Sample Double Degree(s)

To access sample program(s), please visit:

4480 Aeronautical Engineering (Honours)/Science Sample Program

Please read the Double Degree Program rules as some specific rules apply to particular Double Degree combinations.
Enrolment Disclaimer

Unless advised otherwise by your program authority, you should follow the rules for the handbook for the year you commenced your program. You are also responsible for ensuring you enrol in courses according to your program requirements. myUNSW enrolment checks that you have met enrolment requirements such as pre-requisites for individual courses but not that a course will count towards your program requirements.
Program Fees

At UNSW fees are generally charged at course level and therefore dependent upon individual enrolment and other factors such as student's residency status. For generic information on fees and additional expenses of UNSW programs, click on one of the following:

- Domestic Students
- Commonwealth Supported Students
- International Students
Pre-2019 Handbook Editions

Access past handbook editions (2018 and prior)

Pre-2019 Handbook Editions
© UNSW Sydney (CRICOS Provider No.: 00098G), 2019. The information contained in this Handbook is indicative only. While every effort is made to keep this information up-to-date, the University reserves the right to discontinue or vary arrangements, programs and courses at any time without notice and at its discretion. While the University will try to avoid or minimise any inconvenience, changes may also be made to programs, courses and staff after enrolment. The University may also set limits on the number of students in a course.

Authorised by Deputy Vice-Chancellor (Academic)
CRICOS Provider Code 00098G
ABN: 57 195 873 179