Overview

The purpose of Honours within the Discipline of Computational Design is to enable students who have performed well at undergraduate level to deepen their knowledge of design methods, literature and history by undertaking a significant research project. Honours is a means for connecting undergraduate study with supervised independent research by consolidating and extending work completed in the undergraduate program and providing an academic foundation for students continuing on to a Professional Masters, Masters by research or a PhD. As part of the Honours program students will be expected to complete a significant independent research project and coursework study. Students will generally also be expected to undertake research literacy training, Integrity in research training, attend OH & S and safety training in the Faculty's Squarehouse studios and present at Faculty research seminars.
<table>
<thead>
<tr>
<th>Faculty</th>
<th>Faculty of Built Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campus</td>
<td>Kensington</td>
</tr>
<tr>
<td>Study Level</td>
<td>Undergraduate</td>
</tr>
<tr>
<td>Typical duration</td>
<td>1 Years</td>
</tr>
<tr>
<td>Delivery Mode</td>
<td>Face-to-face</td>
</tr>
<tr>
<td>Intake Period</td>
<td>Term 1</td>
</tr>
<tr>
<td>Academic Calendar</td>
<td>3+ Calendar</td>
</tr>
<tr>
<td>Minimum Units of Credit</td>
<td>48</td>
</tr>
<tr>
<td>Award type</td>
<td>Bachelors Honours</td>
</tr>
<tr>
<td>Award(s)</td>
<td>Bachelor of Computational Design (Honours) - BCoDe (Hons)</td>
</tr>
<tr>
<td>CRICOS Code</td>
<td>089222F</td>
</tr>
</tbody>
</table>
Learning Outcomes

1. Show an understanding of the processes required to achieve successful computational design work
 - Professionals
 - Scholars

2. Demonstrate an understanding of current innovations in Computational Design
 - Professionals
 - Leaders
 - Scholars

3. Review, analyse, consolidate and synthesise literature for critical inquiry and research practice within the discipline of Computational Design
 - Scholars
 - Professionals

4. Demonstrate ability to analyse data and solve complex design problems
 - Scholars
 - Professionals

5. Plan and execute project work and/or a piece of research and scholarship to a professional standard
 - Global Citizens
 - Scholars
 - Professionals

6. Employ verbal and visual communication skills to present a clear and coherent exposition of knowledge and ideas to a variety of audiences
 - Global Citizens
 - Scholars
 - Leaders

7. Apply relevant concepts from across materials science, computational manufacturing and robotics to inform 3D design investigations
 - Scholars
 - Professionals
 - Global Citizens

8. Demonstrate autonomy, well-developed judgment, adaptability and responsibility as a novice researcher within the discipline of Computational Design.
 - Scholars
 - Leaders
 - Professionals

9. Act ethically and responsibly
 - Leaders
 - Global Citizens
 - Professionals

10. Contribute to ongoing innovation and creativity in the field of computational design
 - Global Citizens
 - Leaders
 - Professionals
 - Scholars

Graduate Capabilities:

For more information on Graduate Capabilities, please click on this link.
Program Structure

Students must complete 48 UOC as a standalone program.

Core Courses

Students must take 18 UOC of the following courses.

BENV4000 | 6 UOC
Research Methods in the Built Environment

CODE4100 | 12 UOC
Critical Review of the Literature

Thesis

Students must take 18 UOC of the following courses.

CODE4200 | 18 UOC
Honours Thesis

Prescribed Electives

Students must take at least 12 UOC of the following courses.

One of the following:
CODE2210 | 6 UOC
Philosophy of Technology

CODE2256 | 6 UOC
Rhino and Grasshopper Advanced: Python I

CODE3131 | 6 UOC
Responsive Environments Studio

CODE3156 | 6 UOC
Rhino and Grasshopper Advanced: Python II

One of the following:
Sample Programs

To access sample program(s), please visit:

Computational Design (Honours)

Enrolment Disclaimer

Unless advised otherwise by your program authority, you should follow the rules for the handbook for the year you commenced your program. You are also responsible for ensuring you enrol in courses according to your program requirements. myUNSW enrolment checks that you have met enrolment requirements such as pre-requisites for individual courses but not that a course will count towards your program requirements.
Admission Requirements

Entry Requirements
Bachelor degree in Computational Design with the equivalent of a UNSW Credit average.

For more information about admission requirements for various UNSW programs, visit the following website(s):

Domestic Students
International Student
Program Requirements

Progression Requirements

Progression rules are in accordance with university policy.

For more information on university policy on progression requirements please visit Academic Progression.
Pathways

Post Graduate

Doctor of Philosophy - PhD
1120 Built Environment

Faculty: Faculty of Built Environment
Campus: Kensington
Units of Credit: 144
Typical Duration: 3 to 4 Years

Read More

Master of Philosophy - MPhil
2222 Built Environment

Faculty: Faculty of Built Environment
Campus: Kensington
Units of Credit: 72
Typical Duration: 1.7 Years

Read More
Recognition of Achievement

University Medal

The University Medal is awarded to recognise outstanding academic performance by a bachelor degree student in line with the University Medal Policy and University Medal Procedure.

Honours Classes

The classes of Honours awarded are Class 1 or Class 2 Division 1 or Class 2 Division 2. Students need to achieve the following to qualify for the various classes of Honours:

Honours 1: WAM of 85 and above in Honours Year

Honours 2: 1 WAM of 75 to 84.99 in Honours Year

Honours 2: 2 WAM of 65 to 74.99 in Honours Year

Students who achieve a WAM of between 50 and 64 will graduate with a Bachelor of Computational Design (Honours) but with no class of Honours specified. The Honours Thesis component will be marked by 2 examiners qualified to assess the work independently of each other.
Program Fees

At UNSW fees are generally charged at course level and therefore dependent upon individual enrolment and other factors such as student's residency status. For generic information on fees and additional expenses of UNSW programs, click on one of the following:

- Domestic Students
- Commonwealth Supported Students
- International Students

Additional Expenses

All enrolled students will have to purchase and maintain their own laptop but can access specialist software as required and supported by their supervisor via Central IT services i.e. SPSS, NVIVO and the like. Students are encouraged to purchase the required text, which is currently Groat, L. N. & Wang, D. C. (2013) Architectural research methods. 2nd ed. New York: Wiley.

The Faculty will support students on a case-by-case basis upon application of a fully developed, substantiated and costed research proposal for up to $500.00 worth of materials to cover, fabrication, postage etc. as required.
Pre-2019 Handbook Editions

Access past handbook editions (2018 and prior)

Pre-2019 Handbook Editions
© UNSW Sydney (CRICOS Provider No.: 00098G), 2019. The information contained in this Handbook is indicative only. While every effort is made to keep this information up-to-date, the University reserves the right to discontinue or vary arrangements, programs and courses at any time without notice and at its discretion. While the University will try to avoid or minimise any inconvenience, changes may also be made to programs, courses and staff after enrolment. The University may also set limits on the number of students in a course.

Authorised by Deputy Vice-Chancellor (Academic)
CRICOS Provider Code 00098G
ABN: 57 195 873 179