Chemical Engineering involves researching, developing and improving properties of products we use every day through the selection of raw materials, the design of chemical processes, and improving the conditions for production. It's about taking projects from inception as a research proposal, through product development and on to commercialisation and manufacture. You'll learn how to apply your knowledge in chemical engineering and chemistry to optimise complex chemical processes in environmental management, general industry and services like water delivery. You'll master the entire process, extrapolating small scale, laboratory chemistry into large, industrial scale production. To get work ready, you'll apply these skills through 60 days of approved industry training.
<table>
<thead>
<tr>
<th>Faculty</th>
<th>Faculty of Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>School</td>
<td>School of Chemical Engineering</td>
</tr>
<tr>
<td>Study Level</td>
<td>Undergraduate</td>
</tr>
<tr>
<td>Minimum Units of Credit</td>
<td>168</td>
</tr>
<tr>
<td>Specialisation Type</td>
<td>Honours</td>
</tr>
</tbody>
</table>
Available in Program(s)

Program(s) in which this honours is available

Bachelor of Engineering (Honours) - BE (Hons)

3707 Engineering (Honours)

Faculty: Faculty of Engineering
Campus: Kensington
Units of Credit: 192
Typical Duration: 4 Years

Bachelor of Engineering (Honours) - BE (Hons)

3768 Engineering (Honours)/Biomedical Engineering

Master of Biomedical Engineering - MBiomedE

Faculty: Faculty of Engineering
Campus: Kensington
Units of Credit: 240
Typical Duration: 5 Years
Specialisation Structure

Students must complete 168 UOC.

Level 1 Core Courses

Students must take 42 UOC of the following courses.

- **CHEM1811** | 6 UOC
 Engineering Chemistry 1A

- **CHEM1821** | 6 UOC
 Engineering Chemistry 1B

- **ENGG1000** | 6 UOC
 Introduction to Engineering Design and Innovation

- **ENGG1811** | 6 UOC
 Computing for Engineers

One of the following:

- **MATH1131** | 6 UOC
 Mathematics 1A

- **MATH1141** | 6 UOC
 Higher Mathematics 1A

One of the following:

- **MATH1231** | 6 UOC
 Mathematics 1B

- **MATH1241** | 6 UOC
 Higher Mathematics 1B

One of the following:

- **PHYS1121** | 6 UOC
 Physics 1A
Level 2 Core Courses

Students must take 48 UOC of the following courses.

CEIC2000 | 6 UOC
Material and Energy Systems

CEIC2001 | 6 UOC
Fluid and Particle Mechanics

CEIC2002 | 6 UOC
Heat and Mass Transfer

CEIC2004 | 6 UOC
Industrial Chemistry for Chemical Engineers

CEIC2005 | 6 UOC
Chemical Reaction Engineering

CEIC2007 | 6 UOC
Chemical Engineering Lab A

MATH2089 | 6 UOC
Numerical Methods and Statistics

One of the following:
MATH2018 | 6 UOC
Engineering Mathematics 2D

MATH2019 | 6 UOC
Engineering Mathematics 2E

Level 3 Core Courses
Students must take 36 UOC of the following courses.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>UOC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEIC3000</td>
<td>6</td>
<td>Process Modelling and Analysis</td>
</tr>
<tr>
<td>CEIC3001</td>
<td>6</td>
<td>Advanced Thermodynamics and Separation</td>
</tr>
<tr>
<td>CEIC3004</td>
<td>6</td>
<td>Process Equipment Design</td>
</tr>
<tr>
<td>CEIC3005</td>
<td>6</td>
<td>Process Plant Design</td>
</tr>
<tr>
<td>CEIC3006</td>
<td>6</td>
<td>Process Dynamics and Control</td>
</tr>
<tr>
<td>CEIC3007</td>
<td>6</td>
<td>Chemical Engineering Lab B</td>
</tr>
</tbody>
</table>

Level 4 Core Courses

Students must take 30 UOC of the following courses.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>UOC</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEIC4000</td>
<td>6</td>
<td>Environment and Sustainability</td>
</tr>
<tr>
<td>CEIC4001</td>
<td>12</td>
<td>Process Design Project</td>
</tr>
<tr>
<td>CEIC4951</td>
<td>4</td>
<td>Research Thesis A</td>
</tr>
<tr>
<td>CEIC4952</td>
<td>4</td>
<td>Research Thesis B</td>
</tr>
<tr>
<td>CEIC4953</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Discipline (Depth) Electives

Students must take at least 6 UOC, up to a maximum of 12 UOC of the following courses.

CEIC6004 | 6 UOC
Advanced Polymers

CEIC6711 | 6 UOC
Complex Fluids Microstructure and Rheology

CEIC8102 | 6 UOC
Advanced Process Control

CHEN6701 | 6 UOC
Advanced Reaction Engineering

CHEN6703 | 6 UOC
Advanced Particle Systems Engineering

CHEN6706 | 6 UOC
Advanced Transport Phenomena

Level 1 Prescribed Electives

Students must take at least 6 UOC of the following courses.

BABS1201 | 6 UOC
Molecules, Cells and Genes

BIOM1010 | 6 UOC
Engineering in Medicine and Biology

BIOS1301 | 6 UOC
Ecology, Sustainability and Environmental Science
CEIC1000 | 6 UOC
Sustainable Product Engineering and Design

COMP1521 | 6 UOC
Computer Systems Fundamentals

COMP1531 | 6 UOC
Software Engineering Fundamentals

CVEN1701 | 6 UOC
Environmental Principles and Systems

ELEC1111 | 6 UOC
Electrical and Telecommunications Engineering

ENGG1100 | 6 UOC
Grand Challenges for Engineering

ENGG1200 | 6 UOC
Undergraduate Special Projects

ENGG1300 | 6 UOC
Engineering Mechanics

ENGG1400 | 6 UOC
Engineering Infrastructure Systems

GEOS1111 | 6 UOC
Fundamentals of Geology

GMAT1110 | 6 UOC
Surveying and Geospatial Engineering

MATH1081 | 6 UOC
Discrete Mathematics
<table>
<thead>
<tr>
<th>Course Code</th>
<th>UOC</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATS1101</td>
<td>6</td>
<td>Engineering Materials and Chemistry</td>
</tr>
<tr>
<td>MINE1010</td>
<td>6</td>
<td>Mineral Resources Engineering</td>
</tr>
<tr>
<td>PHYS1231</td>
<td>6</td>
<td>Higher Physics 1B</td>
</tr>
<tr>
<td>PSYC1001</td>
<td>6</td>
<td>Psychology 1A</td>
</tr>
<tr>
<td>SOLA1070</td>
<td>6</td>
<td>Sustainable Energy</td>
</tr>
</tbody>
</table>

Discipline Electives (Single Degree Mode)

As a part of the CEICAH stream, students are required to select one elective from the Disciplinary Electives (Depth) list given above. Students studying a single degree in chemical engineering are required to select another two disciplinary electives, one from the Disciplinary Electives (Breadth) list and the remaining from either the Depth, Breadth, or Practice lists.

Breadth Electives

Students can take up to a maximum of 12 UOC of the following courses.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>UOC</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEIC6005</td>
<td>6</td>
<td>Fuel and Energy</td>
</tr>
<tr>
<td>CEIC204</td>
<td>6</td>
<td>Topics in Business Management in Chemical Engineering</td>
</tr>
<tr>
<td>CEIC8330</td>
<td>6</td>
<td>Process Engineering in the Petroleum Industry</td>
</tr>
<tr>
<td>CEIC8341</td>
<td>6</td>
<td>Membrane Processes</td>
</tr>
<tr>
<td>Course Code</td>
<td>UOC</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td></td>
</tr>
<tr>
<td>CHEM2041</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ELEC4445</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ENGG3001</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>FOOD3010</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>FOOD8450</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>GSOE9111</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>POLY3000</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Practice Electives

Students can take up to a maximum of 6 UOC of the following courses.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEIC4954</td>
<td>6</td>
</tr>
<tr>
<td>ENGG3060</td>
<td>6</td>
</tr>
<tr>
<td>ENGG4060</td>
<td>6</td>
</tr>
<tr>
<td>ENGG4102</td>
<td>6</td>
</tr>
</tbody>
</table>
Recommended Level 1 Elective

The suggested Level 1 Elective for this stream is,

- CEIC1000 Product Engineering Design (6 UOC)

Enrolment Disclaimer

You are responsible for ensuring you enrol in courses according to your program requirements. myUNSW enrolment checks that you have met enrolment requirements such as pre-requisites for individual courses but not that a course will count towards your program requirements. Do not assume that because you have enrolled in a course that the course will be credited towards your program.
Additional Information

Industrial Experience Requirements

Students are required to complete a minimum of 60 days of Industrial Training.

Further Requirements

Students are expected to possess a calculator having exponential capabilities, however, more advanced calculators and personal computers, will be found useful.

Students of both Chemical Engineering and Industrial Chemistry are advised to have a copy of Perry J H Ed. Chemical Engineers Handbook 6th Ed. McGraw-Hill. This book is used extensively for most courses and units.

Professional Recognition

Successful completion of the BE (Hons) (Chemical Engineering) degree program is accepted by the Institution of Chemical Engineers and by Engineers Australia as sufficient academic qualification for membership.
Pre-2019 Handbook Editions

Access past handbook editions (2018 and prior)

Pre-2019 Handbook Editions
© UNSW Sydney (CRICOS Provider No.: 00098G), 2019. The information contained in this Handbook is indicative only. While every effort is made to keep this information up-to-date, the University reserves the right to discontinue or vary arrangements, programs and courses at any time without notice and at its discretion. While the University will try to avoid or minimise any inconvenience, changes may also be made to programs, courses and staff after enrolment. The University may also set limits on the number of students in a course.

Authorised by Deputy Vice-Chancellor (Academic)
CRICOS Provider Code 00098G
ABN: 57 195 873 179