Chemical Engineering

CEICAH

Chemical Engineering involves researching, developing and improving properties of products we use every day through the selection of raw materials, the design of chemical processes, and improving the conditions for production. It's about taking projects from inception as a research proposal, through product development and on to commercialisation and manufacture. You'll learn how to apply your knowledge in chemical engineering and chemistry to optimise complex chemical processes in environmental management, general industry and services like water delivery. You'll master the entire process, extrapolating small scale, laboratory chemistry into large, industrial scale production. To get work ready, you'll apply these skills through 60 days of approved industry training.
<table>
<thead>
<tr>
<th>Faculty</th>
<th>Faculty of Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>School</td>
<td>School of Chemical Engineering</td>
</tr>
<tr>
<td>Study Level</td>
<td>Undergraduate</td>
</tr>
<tr>
<td>Minimum Units of Credit</td>
<td>168</td>
</tr>
<tr>
<td>Specialisation Type</td>
<td>Honours</td>
</tr>
<tr>
<td>Available in Program(s)</td>
<td></td>
</tr>
<tr>
<td>------------------------</td>
<td></td>
</tr>
<tr>
<td>Program(s) in which this honours is available</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bachelor of Engineering (Honours) - BE (Hons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3707 Engineering (Honours)</td>
</tr>
<tr>
<td>Faculty: Faculty of Engineering</td>
</tr>
<tr>
<td>Campus: Kensington</td>
</tr>
<tr>
<td>Units of Credit: 192</td>
</tr>
<tr>
<td>Typical Duration: 4 Years</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bachelor of Engineering (Honours) - BE (Hons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master of Biomedical Engineering - MBiomedE</td>
</tr>
<tr>
<td>3768 Engineering (Honours)/Biomedical Engineering</td>
</tr>
<tr>
<td>Faculty: Faculty of Engineering</td>
</tr>
<tr>
<td>Campus: Kensington</td>
</tr>
<tr>
<td>Units of Credit: 240</td>
</tr>
<tr>
<td>Typical Duration: 5 Years</td>
</tr>
</tbody>
</table>
Specialisation Structure

Students must complete 168 UOC.

Level 1 Core Courses

Students must take 42 UOC of the following courses.

CHEM1811 | 6 UOC
Engineering Chemistry 1A

CHEM1821 | 6 UOC
Engineering Chemistry 1B

ENGG1000 | 6 UOC
Introduction to Engineering Design and Innovation

ENGG1811 | 6 UOC
Computing for Engineers

One of the following:
MATH1131 | 6 UOC
Mathematics 1A

MATH1141 | 6 UOC
Higher Mathematics 1A

One of the following:
MATH1231 | 6 UOC
Mathematics 1B

MATH1241 | 6 UOC
Higher Mathematics 1B

One of the following:
PHYS1121 | 6 UOC
Physics 1A
Level 2 Core Courses

Students must take 48 UOC of the following courses.

- CEIC2000 | 6 UOC
 Material and Energy Systems

- CEIC2001 | 6 UOC
 Fluid and Particle Mechanics

- CEIC2002 | 6 UOC
 Heat and Mass Transfer

- CEIC2004 | 6 UOC
 Industrial Chemistry for Chemical Engineers

- CEIC2005 | 6 UOC
 Chemical Reaction Engineering

- CEIC2007 | 6 UOC
 Chemical Engineering Lab A

- MATH2089 | 6 UOC
 Numerical Methods and Statistics

One of the following:
- MATH2018 | 6 UOC
 Engineering Mathematics 2D

- MATH2019 | 6 UOC
 Engineering Mathematics 2E

Level 3 Core Courses
Students must take 36 UOC of the following courses.

CEIC3000 | 6 UOC
Process Modelling and Analysis

CEIC3001 | 6 UOC
Advanced Thermodynamics and Separation

CEIC3004 | 6 UOC
Process Equipment Design

CEIC3005 | 6 UOC
Process Plant Design

CEIC3006 | 6 UOC
Process Dynamics and Control

CEIC3007 | 6 UOC
Chemical Engineering Lab B

Level 4 Core Courses

Students must take 30 UOC of the following courses.

CEIC4000 | 6 UOC
Environment and Sustainability

CEIC4001 | 12 UOC
Process Design Project

CEIC4951 | 4 UOC
Research Thesis A

CEIC4952 | 4 UOC
Research Thesis B

CEIC4953 | 4 UOC
Discipline (Depth) Electives

Students must take at least 6 UOC, up to a maximum of 12 UOC of the following courses.

- **CEIC6004** | 6 UOC
 Advanced Polymers

- **CEIC6711** | 6 UOC
 Complex Fluids Microstructure and Rheology

- **CEIC8102** | 6 UOC
 Advanced Process Control

- **CHEN6701** | 6 UOC
 Advanced Reaction Engineering

- **CHEN6703** | 6 UOC
 Advanced Particle Systems Engineering

- **CHEN6706** | 6 UOC
 Advanced Transport Phenomena

Level 1 Prescribed Electives

Students must take at least 6 UOC of the following courses.

- **BABS1201** | 6 UOC
 Molecules, Cells and Genes

- **BIOM1010** | 6 UOC
 Engineering in Medicine and Biology

- **BIOS1301** | 6 UOC
 Ecology, Sustainability and Environmental Science
<table>
<thead>
<tr>
<th>Course Code</th>
<th>UOC</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEIC1000</td>
<td>6</td>
<td>Sustainable Product Engineering and Design</td>
</tr>
<tr>
<td>COMP1521</td>
<td>6</td>
<td>Computer Systems Fundamentals</td>
</tr>
<tr>
<td>COMP1531</td>
<td>6</td>
<td>Software Engineering Fundamentals</td>
</tr>
<tr>
<td>CVEN1701</td>
<td>6</td>
<td>Environmental Principles and Systems</td>
</tr>
<tr>
<td>ELEC1111</td>
<td>6</td>
<td>Electrical and Telecommunications Engineering</td>
</tr>
<tr>
<td>ENGG1100</td>
<td>6</td>
<td>Grand Challenges for Engineering</td>
</tr>
<tr>
<td>ENGG1200</td>
<td>6</td>
<td>Undergraduate Special Projects</td>
</tr>
<tr>
<td>ENGG1300</td>
<td>6</td>
<td>Engineering Mechanics</td>
</tr>
<tr>
<td>ENGG1400</td>
<td>6</td>
<td>Engineering Infrastructure Systems</td>
</tr>
<tr>
<td>GEOS1111</td>
<td>6</td>
<td>Fundamentals of Geology</td>
</tr>
<tr>
<td>GMAT1110</td>
<td>6</td>
<td>Surveying and Geospatial Engineering</td>
</tr>
<tr>
<td>MATH1081</td>
<td>6</td>
<td>Discrete Mathematics</td>
</tr>
</tbody>
</table>
Discipline Electives (Single Degree Mode)

As a part of the CEICAH stream, students are required to select one elective from the Disciplinary Electives (Depth) list given above. Students studying a single degree in chemical engineering are required to select another two disciplinary electives, one from the Disciplinary Electives (Breadth) list and the remaining from either the Depth, Breadth, or Practice lists.

Breadth Electives

Students can take up to a maximum of 12 UOC of the following courses.

CEIC6005 | 6 UOC
Fuel and Energy

CEIC8204 | 6 UOC
Topics in Business Management in Chemical Engineering

CEIC8330 | 6 UOC
Process Engineering in the Petroleum Industry

CEIC8341 | 6 UOC
Membrane Processes
<table>
<thead>
<tr>
<th>Course Code</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM2041</td>
<td>6</td>
</tr>
<tr>
<td>ENGG3001</td>
<td>6</td>
</tr>
<tr>
<td>FOOD3010</td>
<td>6</td>
</tr>
<tr>
<td>FOOD8450</td>
<td>6</td>
</tr>
<tr>
<td>GSOE9111</td>
<td>6</td>
</tr>
<tr>
<td>POLY3000</td>
<td>6</td>
</tr>
<tr>
<td>CEIC4954</td>
<td>6</td>
</tr>
<tr>
<td>ENGG3060</td>
<td>6</td>
</tr>
<tr>
<td>ENGG4060</td>
<td>6</td>
</tr>
</tbody>
</table>

Practice Electives

Students can take up to a maximum of 6 UOC of the following courses.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGG3060</td>
<td>6</td>
</tr>
<tr>
<td>ENGG4060</td>
<td>6</td>
</tr>
<tr>
<td>ENGG4102</td>
<td>6</td>
</tr>
</tbody>
</table>
Recommended Level 1 Elective

The suggested Level 1 Elective for this stream is,

- CEIC1000 Product Engineering Design (6 UOC)

Enrolment Disclaimer

You are responsible for ensuring you enrol in courses according to your program requirements. myUNSW enrolment checks that you have met enrolment requirements such as pre-requisites for individual courses but not that a course will count towards your program requirements. Do not assume that because you have enrolled in a course that the course will be credited towards your program.
Additional Information

Industrial Experience Requirements

Students are required to complete a minimum of 60 days of Industrial Training.

Further Requirements

Students are expected to possess a calculator having exponential capabilities, however, more advanced calculators and personal computers, will be found useful.

Students of both Chemical Engineering and Industrial Chemistry are advised to have a copy of Perry J H Ed. Chemical Engineers Handbook 6th Ed. McGraw-Hill. This book is used extensively for most courses and units.

Professional Recognition

Successful completion of the BE (Hons) (Chemical Engineering) degree program is accepted by the Institution of Chemical Engineers and by Engineers Australia as sufficient academic qualification for membership.
Pre-2019 Handbook Editions

Access past handbook editions (2018 and prior)

Pre-2019 Handbook Editions
© UNSW Sydney (CRICOS Provider No.: 00098G), 2019. The information contained in this Handbook is indicative only. While every effort is made to keep this information up-to-date, the University reserves the right to discontinue or vary arrangements, programs and courses at any time without notice and at its discretion. While the University will try to avoid or minimise any inconvenience, changes may also be made to programs, courses and staff after enrolment. The University may also set limits on the number of students in a course.

Authorised by Deputy Vice-Chancellor (Academic)
CRICOS Provider Code 00098G
ABN: 57 195 873 179