Specialisation

Chemical Engineering

CEICAH

Chemical Engineering involves researching, developing and improving properties of products we use every day through the selection of raw materials, the design of chemical processes, and improving the conditions for production. It's about taking projects from inception as a research proposal, through product development and on to commercialisation and manufacture. You'll learn how to apply your knowledge in chemical engineering and chemistry to optimise complex chemical processes in environmental management, general industry and services like water delivery. You'll master the entire process, extrapolating small scale, laboratory chemistry into large, industrial scale production. To get work ready, you'll apply these skills through 60 days of approved industry training.
Faculty
Faculty of Engineering

School
School of Chemical Engineering

Study Level
Undergraduate

Minimum Units of Credit
168

Specialisation Type
Honours
Available in Program(s)

Program(s) in which this honours is available

Bachelor of Engineering (Honours) - BE (Hons)
3707 Engineering (Honours)
Faculty: Faculty of Engineering
Campus: Kensington
Units of Credit: 192
Typical Duration: 4 Years

Bachelor of Engineering (Honours) - BE (Hons)
Master of Biomedical Engineering - MBiomedE
3768 Engineering (Honours)/Biomedical Engineering
Faculty: Faculty of Engineering
Campus: Kensington
Units of Credit: 240
Typical Duration: 5 Years
Specialisation Structure

Students must complete 168 UOC.

Level 1 Core Courses

Students must take 42 UOC of the following courses.

CHEM1811 | 6 UOC
Engineering Chemistry 1A

CHEM1821 | 6 UOC
Engineering Chemistry 1B

ENGG1000 | 6 UOC
Introduction to Engineering Design and Innovation

ENGG1811 | 6 UOC
Computing for Engineers

One of the following:
MATH1131 | 6 UOC
Mathematics 1A

MATH1141 | 6 UOC
Higher Mathematics 1A

One of the following:
MATH1231 | 6 UOC
Mathematics 1B

MATH1241 | 6 UOC
Higher Mathematics 1B

One of the following:
PHYS1121 | 6 UOC
Physics 1A
PHYS1131  |  6 UOC
Higher Physics 1A

**Level 2 Core Courses**

Students must take 48 UOC of the following courses.

**CEIC2000**  |  6 UOC
Material and Energy Systems

**CEIC2001**  |  6 UOC
Fluid and Particle Mechanics

**CEIC2002**  |  6 UOC
Heat and Mass Transfer

**CEIC2004**  |  6 UOC
Industrial Chemistry for Chemical Engineers

**CEIC2005**  |  6 UOC
Chemical Reaction Engineering

**CEIC2007**  |  6 UOC
Chemical Engineering Lab A

**MATH2089**  |  6 UOC
Numerical Methods and Statistics

One of the following:
**MATH2018**  |  6 UOC
Engineering Mathematics 2D

**MATH2019**  |  6 UOC
Engineering Mathematics 2E

**Level 3 Core Courses**
Students must take 36 UOC of the following courses.

**CEIC3000 | 6 UOC**
Process Modelling and Analysis

**CEIC3001 | 6 UOC**
Advanced Thermodynamics and Separation

**CEIC3004 | 6 UOC**
Process Equipment Design

**CEIC3005 | 6 UOC**
Process Plant Design

**CEIC3006 | 6 UOC**
Process Dynamics and Control

**CEIC3007 | 6 UOC**
Chemical Engineering Lab B

**Level 4 Core Courses**

Students must take 30 UOC of the following courses.

**CEIC4000 | 6 UOC**
Environment and Sustainability

**CEIC4001 | 12 UOC**
Process Design Project

**CEIC4951 | 4 UOC**
Research Thesis A

**CEIC4952 | 4 UOC**
Research Thesis B

**CEIC4953 | 4 UOC**
**Discipline (Depth) Electives**

Students must take at least 6 UOC, up to a maximum of 12 UOC of the following courses.

- CEIC6004  |  6 UOC  
  Advanced Polymers

- CEIC6711  |  6 UOC  
  Complex Fluids Microstructure and Rheology

- CEIC8102  |  6 UOC  
  Advanced Process Control

- CHEN6701  |  6 UOC  
  Advanced Reaction Engineering

- CHEN6703  |  6 UOC  
  Advanced Particle Systems Engineering

- CHEN6706  |  6 UOC  
  Advanced Transport Phenomena

**Level 1 Prescribed Electives**

Students must take at least 6 UOC of the following courses.

- BABS1201  |  6 UOC  
  Molecules, Cells and Genes

- BIOM1010  |  6 UOC  
  Engineering in Medicine and Biology

- BIOS1301  |  6 UOC  
  Ecology, Sustainability and Environmental Science
<table>
<thead>
<tr>
<th>Course Code</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEIC1000</td>
<td>6</td>
</tr>
<tr>
<td>Sustainable</td>
<td></td>
</tr>
<tr>
<td>Product</td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>and Design</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP1521</td>
<td>6</td>
</tr>
<tr>
<td>Computer</td>
<td></td>
</tr>
<tr>
<td>Systems</td>
<td></td>
</tr>
<tr>
<td>Fundamentals</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>COMP1531</td>
<td>6</td>
</tr>
<tr>
<td>Software</td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>Fundamentals</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>CVEN1701</td>
<td>6</td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
</tr>
<tr>
<td>Principles</td>
<td></td>
</tr>
<tr>
<td>and Systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEC1111</td>
<td>6</td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
</tr>
<tr>
<td>and</td>
<td></td>
</tr>
<tr>
<td>Telecommunications</td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGG1100</td>
<td>6</td>
</tr>
<tr>
<td>Grand</td>
<td></td>
</tr>
<tr>
<td>Challenges</td>
<td></td>
</tr>
<tr>
<td>for Engineering</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGG1200</td>
<td>6</td>
</tr>
<tr>
<td>Undergraduate</td>
<td></td>
</tr>
<tr>
<td>Special</td>
<td></td>
</tr>
<tr>
<td>Projects</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGG1300</td>
<td>6</td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>Mechanics</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>ENGG1400</td>
<td>6</td>
</tr>
<tr>
<td>Engineering</td>
<td></td>
</tr>
<tr>
<td>Infrastructure</td>
<td>Systems</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS1111</td>
<td>6</td>
</tr>
<tr>
<td>Fundamentals</td>
<td></td>
</tr>
<tr>
<td>of Geology</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>GMAT1110</td>
<td>6</td>
</tr>
<tr>
<td>Surveying</td>
<td></td>
</tr>
<tr>
<td>and Geospatial</td>
<td>Engineering</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH1081</td>
<td>6</td>
</tr>
<tr>
<td>Discrete</td>
<td></td>
</tr>
<tr>
<td>Mathematics</td>
<td></td>
</tr>
</tbody>
</table>
MATS1101  |  6 UOC  
Engineering Materials and Chemistry

MINE1010  |  6 UOC  
Mineral Resources Engineering

PHYS1231  |  6 UOC  
Higher Physics 1B

PSYC1001  |  6 UOC  
Psychology 1A

SOLA1070  |  6 UOC  
Sustainable Energy

**Discipline Electives (Single Degree Mode)**

As a part of the CEICAH stream, students are required to select one elective from the Disciplinary Electives (Depth) list given above. Students studying a single degree in chemical engineering are required to select another two disciplinary electives, one from the Disciplinary Electives (Breadth) list and the remaining from either the Depth, Breadth, or Practice lists.

**Breadth Electives**

Students can take up to a maximum of 12 UOC of the following courses.

CEIC6005  |  6 UOC  
Fuel and Energy

CEIC8204  |  6 UOC  
Topics in Business Management in Chemical Engineering

CEIC8330  |  6 UOC  
Process Engineering in the Petroleum Industry

CEIC8341  |  6 UOC  
Membrane Processes
CHEM2041  |  6 UOC
Analytical Chemistry: Essential Methods

ELEC4445  |  6 UOC
Entrepreneurial Engineering

ENGG3001  |  6 UOC
Fundamentals of Humanitarian Engineering

FOOD3010  |  6 UOC
Food Preservation

FOOD8450  |  6 UOC
Advanced Food Engineering

GSOE9111  |  6 UOC
Energy Storage

POLY3000  |  6 UOC
Polymer Science

**Practice Electives**

Students can take up to a maximum of 6 UOC of the following courses.

CEIC4954  |  6 UOC
Research Thesis Extension

ENGG3060  |  6 UOC
Maker Games

ENGG4060  |  6 UOC
Student Initiated Project

ENGG4102  |  6 UOC
**Recommended Level 1 Elective**

The suggested Level 1 Elective for this stream is,

- CEIC1000 Product Engineering Design (6 UOC)

**Enrolment Disclaimer**

You are responsible for ensuring you enrol in courses according to your program requirements. myUNSW enrolment checks that you have met enrolment requirements such as pre-requisites for individual courses but not that a course will count towards your program requirements. Do not assume that because you have enrolled in a course that the course will be credited towards your program.
Additional Information

Industrial Experience Requirements

Students are required to complete a minimum of 60 days of Industrial Training.

Further Requirements

Students are expected to possess a calculator having exponential capabilities, however, more advanced calculators and personal computers, will be found useful.

Students of both Chemical Engineering and Industrial Chemistry are advised to have a copy of Perry J H Ed. Chemical Engineers Handbook 6th Ed. McGraw-Hill. This book is used extensively for most courses and units.

Professional Recognition

Successful completion of the BE (Hons) (Chemical Engineering) degree program is accepted by the Institution of Chemical Engineers and by Engineers Australia as sufficient academic qualification for membership.
Pre-2019 Handbook Editions

Access past handbook editions (2018 and prior)

Pre-2019 Handbook Editions