The Mechanical and Manufacturing Engineering stream is designed for students with a mechanical engineering major whose interests also lie in realising, commercialising and implementing mechanical and mechatronic systems and designs. The five core courses included as part of this stream have been designed on the basis of world best practice in manufacturing and industrial engineering and reflect a top-down - bottom-up approach, spanning the disciplines of Strategy and Management, Operations and Supply Chains, Analysis and Decision-making, Design of Product-Process Systems and Technology & Automation.

Within each discipline area this new stream will cover many conceptual and analytical techniques, all supporting fact- and data-based analysis and decision making with the aim of improved product and process performance, economy and sustainability. This stream is designed to help you to learn how to transform a design from a conceptual stage into a prototype and ultimately into a commercially realisable and viable product. This stream focuses on technical as well as commercial aspects and particularly in developing the ability to build a business or commercial case for making engineering related decisions, such as investment in plant, equipment and processes. Although the main emphasis will be on product and process, consideration will also be given to designing compatible and appropriate engineering support services. The stream also emphasises the strategic impact of operations decisions and the interfaces between operations and the other functional areas of organisations, including of course, finance. This stream encompasses the key elements of operations management and investment analysis and pulls them together in a coherent format that allows you to understand the 'big picture' as well as 'the specific details'. It is aimed at integrating the knowledge gained from the mechanical engineering courses you have studied into a framework and process that allows you to implement your designs, solutions and ideas in a commercial environment.
Mechanical engineers have traditionally played the major role in the analysis and design of complex machinery, devices such as actuators and sensors, as well as energy transformation, heat transfer and electro-mechanical processes. In an environment of global competition, sustainability (energy, environment as well as cost and capital), increasingly complex customer requirements and statutory regulations as well as the increasing pace of technological change and new product innovation, it is vital for modern engineers to possess the skills to not only design but equally importantly, implement and realize their designs in the most appropriate way. In this increasingly complex environment, successful organizations - public, private or governmental - need engineers with analytical and diverse skills, especially in integrating technical with commercial and organisational issues, analyses and ultimately solutions. It is the purpose and aim of the Mechanical and Manufacturing Engineering stream to equip you with this knowledge and understanding to become a global engineer, indeed a leader, with the ability to apply analytical methods and quality processes to create short and long term value for your organization, your customers, and the community. It encapsulates the key elements of mechanical engineering and combines them with the five core disciplines of manufacturing and industrial engineering.

An engineer trained in Mechanical and Manufacturing Engineering may be employed in a very flexible and diverse range of disciplines and areas of industrial activity, including; product design, process design, computer aided design, computer aided manufacturing, quality improvement, technical and commercial analysis and decision making, strategic decision making, consulting, sales support, technical and organisational maintenance, and supply chain management.
<table>
<thead>
<tr>
<th>Faculty</th>
<th>Faculty of Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>School</td>
<td>School of Mechanical and Manufacturing Engineering</td>
</tr>
<tr>
<td>Study Level</td>
<td>Undergraduate</td>
</tr>
<tr>
<td>Minimum Units of Credit</td>
<td>168</td>
</tr>
<tr>
<td>Specialisation Type</td>
<td>Honours</td>
</tr>
</tbody>
</table>
Available in Program(s)

Program(s) in which this honours is available

Bachelor of Engineering (Honours) - BE (Hons)
3707 Engineering (Honours)
Faculty: Faculty of Engineering
Campus: Kensington
Units of Credit: 192
Typical Duration: 4 Years
Specialisation Structure

Students must complete 168 UOC.

Level 1 Core Courses

Students must take 42 UOC of the following courses.

Note: ENGG1811 is the preferred Computing course for the MANFBH Stream.

ELEC1111 | 6 UOC
Electrical and Telecommunications Engineering

ENGG1000 | 6 UOC
Introduction to Engineering Design and Innovation

ENGG1300 | 6 UOC
Engineering Mechanics

One of the following:

MATH1131 | 6 UOC
Mathematics 1A

MATH1141 | 6 UOC
Higher Mathematics 1A

One of the following:

MATH1231 | 6 UOC
Mathematics 1B

MATH1241 | 6 UOC
Higher Mathematics 1B

One of the following:

PHYS1121 | 6 UOC
Physics 1A

PHYS1131 | 6 UOC
Higher Physics 1A
One of the following:

COMP1511 | 6 UOC
Programming Fundamentals

COMP1911 | 6 UOC
Computing 1A

ENGG1811 | 6 UOC
Computing for Engineers

Level 2 Core Courses

Students must take 48 UOC of the following courses.

ENGG2400 | 6 UOC
Mechanics of Solids 1

ENGG2500 | 6 UOC
Fluid Mechanics for Engineers

MATH2089 | 6 UOC
Numerical Methods and Statistics

MMAN2100 | 6 UOC
Engineering Design 2

MMAN2130 | 6 UOC
Design and Manufacturing

MMAN2300 | 6 UOC
Engineering Mechanics 2

MMAN2700 | 6 UOC
Thermodynamics

One of the following:

MATH2018 | 6 UOC
MATH2019 | 6 UOC
Engineering Mathematics 2E

Level 3 Core Courses

Students must take 42 UOC of the following courses.

MANF3100 | 6 UOC
Product and Manufacturing Design

MANF3510 | 6 UOC
Process Technology and Automation

MANF4430 | 6 UOC
Reliability and Maintenance Engineering

MANF4611 | 6 UOC
Process Modelling and Simulation

MECH3110 | 6 UOC
Mechanical Design 1

MMAN3000 | 6 UOC
Professional Engineering and Communication

MMAN3200 | 6 UOC
Linear Systems and Control

Level 4 Core Courses

Students must take 24 UOC of the following courses.

MANF4430 | 6 UOC
Reliability and Maintenance Engineering
MANF4611 | 6 UOC
Process Modelling and Simulation

MMAN4010 | 6 UOC
Thesis A

MMAN4020 | 6 UOC
Thesis B

MMAN4951 | 4 UOC
Research Thesis A

MMAN4952 | 4 UOC
Research Thesis B

MMAN4953 | 4 UOC
Research Thesis C

Discipline Electives

Students can take up to a maximum of 12 UOC of the following courses.

Students may select disciplinary electives from other streams within the BE(Hons) program subject to approval of the Head of School.

Courses marked with an asterisk (*) are postgraduate level courses and are subject to enrolment restrictions. Seek prior School approval before enrolment.

ENGG3060 | 6 UOC
Maker Games

MANF6860 | 6 UOC
Strategic Manufacturing Management

MANF9400 | 6 UOC
Industrial Management

MANF9420 | 6 UOC
Operations and Supply Chain Management in Engineering

MANF9472 | 6 UOC
Production Planning and Control

MECH9420 | 6 UOC
Composite Materials and Mechanics

MECH9650 | 6 UOC
Introduction to Microfluidics

MECH9720 | 6 UOC
Solar Thermal Energy Design

MECH9761 | 6 UOC
Automobile Engine Technology

MMAN4410 | 6 UOC
Finite Element Methods

MTRN4030 | 6 UOC
Optimisation Methods for Engineering Systems

Level 1 Prescribed Electives

Students can take up to a maximum of 12 UOC of the following courses.

Note:

- Students take ENGG1300 and ELEC1111 as Level 1 Core and are not required to take further Level 1 electives and may choose to substitute L1 elective for higher level electives later in the program.

- ENGG1300 excludes CVEN1300, MINE1300, and MMAN1300.
CHEM1031 and CHEM1041 will only be available to students enrolled in a program which has a Chemistry major.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BABS1201</td>
<td>6</td>
</tr>
<tr>
<td>Molecules, Cells and Genes</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOM1010</td>
<td>6</td>
</tr>
<tr>
<td>Engineering in Medicine and Biology</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS1301</td>
<td>6</td>
</tr>
<tr>
<td>Ecology, Sustainability and Environmental Science</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEIC1000</td>
<td>6</td>
</tr>
<tr>
<td>Sustainable Product Engineering and Design</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1011</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry 1A: Atoms, Molecules and Energy</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1021</td>
<td>6</td>
</tr>
<tr>
<td>Chemistry 1B: Elements, Compounds and Life</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1031</td>
<td>6</td>
</tr>
<tr>
<td>Higher Chemistry 1A: Atoms, Molecules and Energy</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1041</td>
<td>6</td>
</tr>
<tr>
<td>Higher Chemistry 1B: Elements, Compounds and Life</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1811</td>
<td>6</td>
</tr>
<tr>
<td>Engineering Chemistry 1A</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM1821</td>
<td>6</td>
</tr>
<tr>
<td>Engineering Chemistry 1B</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>UOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMP1521</td>
<td>6</td>
</tr>
<tr>
<td>Computer Systems Fundamentals</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>UOC</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
</tr>
<tr>
<td>COMP1531</td>
<td>6</td>
</tr>
<tr>
<td>CVEN1701</td>
<td>6</td>
</tr>
<tr>
<td>ELEC1111</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1100</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1200</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1300</td>
<td>6</td>
</tr>
<tr>
<td>ENGG1400</td>
<td>6</td>
</tr>
<tr>
<td>GEOS1111</td>
<td>6</td>
</tr>
<tr>
<td>GMAT1110</td>
<td>6</td>
</tr>
<tr>
<td>MATH1081</td>
<td>6</td>
</tr>
<tr>
<td>MATS1101</td>
<td>6</td>
</tr>
<tr>
<td>MINE1010</td>
<td>6</td>
</tr>
</tbody>
</table>
Research Thesis Rule

• Research thesis is optional to all Undergraduate students.

• Student must seek a primary supervisor from the School of Mechanical and Manufacturing Engineering, UNSW.

• MMAN4951, MMAN4952 and MMAN4953 must be undertaken in three consecutive terms which are the final three terms of candidature.

• A student must not enrol in more than a standard full-time load involving MMAN4951, MMAN4952 and MMAN4953.

• A single thesis project is commenced in MMAN4951, proceed to MMAN4952, and completed in MMAN4953.

• MMAN4951, MMAN4952, MMAN4953 are graded courses. MMAN4951 carries 10% of the total thesis mark, MMAN4952 carries 20% of the total thesis mark, MMAN4953 carries 70% of the total thesis mark (for Honours weighting purposes).

• If a student receives a failure (FL) in MMAN4951, MMAN4952, or MMAN4953 a student cannot proceed to the next Research Thesis course and must reattempt MMAN4951, or discontinue Research Thesis.

• If the p
Practical/Industry-based Thesis Rule

- Practical/Industry-based Thesis is compulsory to all Undergraduate students who do not wish to conduct Research Thesis.

- MMAN4010, MMAN4020 must be undertaken in two consecutive terms which are the final two terms of candidature.

- A student must not enrol in more than a standard full-time load involving MMAN4010 and MMAN4020

- A single thesis project is commenced in MMAN4010 and completed in MMAN4020.

- MMAN4010 and MMAN4020 are graded course, MMAN4010 carries 25% of the total thesis mark, and MMAN4020 carries 75% of the total thesis mark (for Honours weighting purposes).

- If a student receives a failure (FL) in MMAN4010, a student cannot proceed with MMAN4020, and must reattempt MMAN4010.

- If the project is abandoned during MMAN4010 or MMAN4020, a completely new topic and project team must be chosen and the student must enrol again in both MMAN4010 and MMAN4020.

MMAN4010 | 6 UOC

Thesis A

MMAN4020 | 6 UOC

Thesis B

Level 1 Electives - Chemistry options

Students without any prior Chemistry should choose CHEM1001. Other students with HSC Chemistry who wish to study Chemistry in more depth should choose CHEM1011.

Enrolment Disclaimer

Unless advised otherwise by your program authority, you should follow the rules for
the handbook for the year you commenced your program. You are also responsible for ensuring you enrol in courses according to your program requirements. myUNSW enrolment checks that you have met enrolment requirements such as pre-requisites for individual courses but not that a course will count towards your program requirements.
Pre-2019 Handbook Editions

Access past handbook editions (2018 and prior)

Pre-2019 Handbook Editions